DEEP.I - Lab

오프라인 공간의 지능화를 꿈꾸는 딥아이 연구실입니다.

반응형

Keras 4

[Tensorflow] 학습을 위한 대용량 훈련 데이터 처리 Data Generator 클래스 만들기

Concept 신경망 모델을 학습하기 위해 입력 데이터를 정리하고 전 처리하는 일은 중요하지만 언제나 귀찮은 일입니다. 특히, 이미지 데이터를 학습하기 위해 텐서 플로우에서 ImageGenerator를 설정하는 것은 소규모 데이터에서는 정리가 쉽지만, 대용량 대규모 데이터를 규격에 맞게 정리하는것은 쉽지 않죠. 이번 포스팅에서는 ImageGenerator.flow_ 함수를 직접 class로 만들어 커스터마이징이 쉽고 저장이 용이한 학습 데이터 구축 방법을 구현해보도록 하겠습니다. SourceCode keras.io/api/preprocessing/image/ Keras documentation: Image data preprocessing Image data preprocessing image_datas..

Python/Tensorflow 2021.03.17

[Tensorflow] keras를 이용한 MNIST, CIFAR 이미지 분류 데이터셋 다운로드

이미지 분류 알고리즘 평가에 활용되는 기본적인 데이터셋은 용량이 크지 않아 그때그때 코드로 불러 활용하기 편합니다. 텐서 플로우나 Keras가 설치되어있다면 쉽게 작업 환경으로 불러올 수 있습니다. 텐서 플로우 설치는 이전 포스팅을 참고하시면 됩니다. deep-eye.tistory.com/7 [Tensorflow] 아나콘다 가상환경에서 텐서플로우 설치하기 2019년 말, 텐서플로우 2.0 버전이 배포되면서 머신러닝 분야에서 텐서플로우의 열기는 더욱 더 뜨거워졌습니다. 새로워진 텐서플로우 설치를 시작으로 CNN (Convolutional Neural Network) 기반의 이미지 deep-eye.tistory.com Keras에 포함된 이미지 데이터 다운로드 코드 import tensorflow as tf..

Python/Tensorflow 2020.12.30

[Tensorflow] 텐서플로우에서 사전 학습된 VGG16 모델 불러오기

텐서플로우 설치 포스팅에 이어 사전 학습된 VGG 모델을 활용하는 방법을 살펴보겠습니다. VGG Network는 2014년 이미지넷 인식 학술대회에서 2등을 한 신경망 구조입니다. 본격적으로 층이 깊어지기 시작한 초기 모델 중 하나이며, 사용이 쉽고 연결 구조가 직관적이여서 현재까지도 다양한 학습 모델 연구에서 활용되고 있습니다. 모델은 VGG16/19로 나뉘며 본 포스팅에서는 ImageNet 데이터로 사전 학습된 VGG16 모델을 텐서플로우를 통해 활용해보도록 하겠습니다. 기본 시스템 환경은 다음과 같습니다. 윈도우에서 아나콘다 가상환경으로 구축하였으며 파이참으로 코드를 구현하였습니다. 이전 포스팅을 참고하시면 빠르게 기본 환경을 구축하실 수 있습니다. OS : Windows 10 Python : 3...

Python/Tensorflow 2020.07.10

[Mask R-CNN] Python과 Keras를 이용한 실시간 객체 탐지 알고리즘 구현

Window 10 환경에서 아나콘다 가상 환경을 활용하여 MASK R-CNN을 구동해보았습니다. 기존 공개된 소스를 기반으로 하되, 프로젝트에 맞게 실시간 구동이 가능하게 일부 수정 하였습니다. CPU와 GPU 환경에서 모두 가능하지만 CPU는 프레임당 5~15초 이상걸리네요. 출처: https://github.com/matterport/Mask_RCNN MASK R-CNN의 경우 페이스북 AI 연구팀에서 개발하다보니 파이토치를 기반으로 오픈소스가 공개되어 파이토치에 익숙하지 않고 플랫폼 변경이 부담스러웠는데 반가운 소식.. 개발자분들의 노고에 감사드립니다... Mask R-CNN MASK R-CNN은 기존 Faster R-CNN에 segmentation을 위한 CNN 구조를 추가하여 객체의 위치, 클래..

Python/Tensorflow 2020.06.23
반응형