Concept DBSCAN (Density-based Spatial Clustering of Applications with Noise)은 비선형 클러스터의 군집이나 다양한 크기를 갖는 공간 데이터를 보다 효과적으로 군집하기 위해 이웃한 개체와의 밀도를 계산하여 군집하는 기법입니다. K-Means와 같이 군집 이전에 클러스터의 개수가 필요하지 않고 잡음에 대한 강인성이 높기 때문에 현재까지도 다양한 분야에서 활용되고 있습니다. 이번 포스팅에서는 파이썬을 이용해서 DBSCAN 알고리즘을 구현해보도록 하겠습니다. Algorithm 사실 DBSCAN은 컴퓨팅 알고리즘으로 제안된 기법이기 때문에 특별한 수식이 존재하지 않습니다. 2가지 파라미터만 기억하면 됩니다. 이웃과의 거리를 나타내는 최소 이웃 반경 $\e..