1. Concept 지난 포스팅에 이어, 이번 포스팅에서는 특정한 객체를 집중적으로 분류하기 위해 사전 학습된 신경망 모델을 기반으로 가장 기초적인 방법을 통해 미세 학습 (Find-Tuning)을 구현해 보록 하겠습니다. ImageNet으로 학습된 VGG16 모델을 기반으로, Kaggle에서 제공되는 고양이 강아지 분류 데이터를 활용하겠습니다. 데이터는 200mb 정도이며 Kaggle 원문 링크 또는 구글 드라이브에서 받으실 수 있습니다. 구현 환경 : Windows 10 / Conda / Python 3.8 / Tensorflow 2.2 / CUDA 10.2 이전 포스팅을 참고하시면 기초적인 텐서플로우 구현에 도움이 됩니다 [텐서플로우] 아나콘다 가상 환경에서 텐서플로우 설치하기 [텐서플로우] 텐서플..